1,574 research outputs found

    Online Reinforcement Learning of X-Haul Content Delivery Mode in Fog Radio Access Networks

    Get PDF
    We consider a Fog Radio Access Network (F-RAN) with a Base Band Unit (BBU) in the cloud and multiple cache-enabled enhanced Remote Radio Heads (eRRHs). The system aims at delivering contents on demand with minimal average latency from a time-varying library of popular contents. Information about uncached requested files can be transferred from the cloud to the eRRHs by following either backhaul or fronthaul modes. The backhaul mode transfers fractions of the requested files, while the fronthaul mode transmits quantized baseband samples as in Cloud-RAN (C-RAN). The backhaul mode allows the caches of the eRRHs to be updated, which may lower future delivery latencies. In contrast, the fronthaul mode enables cooperative C-RAN transmissions that may reduce the current delivery latency. Taking into account the trade-off between current and future delivery performance, this paper proposes an adaptive selection method between the two delivery modes to minimize the long-term delivery latency. Assuming an unknown and time-varying popularity model, the method is based on model-free Reinforcement Learning (RL). Numerical results confirm the effectiveness of the proposed RL scheme.Comment: 5 pages, 2 figure

    TRUNK MOTION DURING THE GOLF SWING OF ELITE GOLFERS

    Get PDF
    The key requirement of a successful golf swing is an accurate impact. The body and arm motions dur,ing the backward and forward swings must be executed in such a way that an accurate impact is secured. Novice golfers experience difficulties in coordinating the arm and body motions due to the complexity of the mobility system formed by the trunk and arms. Differentiation of the abnormal swings causing inaccurate impact from normal swings through in-depth trunk motion analysis is thus of importance. The purpose of this study was to provide a biomechanical profile of the normal go'lf swing in te~ms of trunk motion ranges and patterns with the aim of establishing baseline data for comparative studies

    Online Reinforcement Learning of X-Haul Content Delivery Mode in Fog Radio Access Networks

    Get PDF
    We consider a Fog Radio Access Network (F-RAN) with a Base Band Unit (BBU) in the cloud and multiple cache-enabled enhanced Remote Radio Heads (eRRHs). The system aims at delivering contents on demand with minimal average latency from a time-varying library of popular contents. Information about uncached requested files can be transferred from the cloud to the eRRHs by following either backhaul or fronthaul modes. The backhaul mode transfers fractions of the requested files, while the fronthaul mode transmits quantized baseband samples as in Cloud-RAN (C-RAN). The backhaul mode allows the caches of the eRRHs to be updated, which may lower future delivery latencies. In contrast, the fronthaul mode enables cooperative C-RAN transmissions that may reduce the current delivery latency. Taking into account the trade-off between current and future delivery performance, this paper proposes an adaptive selection method between the two delivery modes to minimize the long-term delivery latency. Assuming an unknown and time-varying popularity model, the method is based on model-free Reinforcement Learning (RL). Numerical results confirm the effectiveness of the proposed RL scheme.Comment: 12 pages, 2 figure

    BIOMECHANICAL ANALYSIS A SEQENCE OF ANGULAR VELOCITY AND COORDINATED MUSCLES ACTIVITY DURING BASEBALL HITTING

    Get PDF
    The purpose of this study was to analyse a sequence of rotations and coordinated muscles activities of upper body. Using kinematic and EMG data from 3 recreational university baseball players participating in this study, we computed the angular velocity of trunk, pelvis, bat and trunk-pelvis rotation angle and PMT of upper body muscles. Trunkpelvis rotation angle was 22 ° before the bat-ball contact. The pelvis, trunk, and bat showed a sequence of angular velocity beginning with the hip, followed by the trunk, and end tip of the bat. Additionally, PMT of upper body muscles generated right pectoralis major(1.03 sec.), right external oblique(1.11 sec.), left thoracloumbar fasci(1.12 sec.), left external oblique(1.13 sec.), right latissimus dorsi(1.15 sec.), left latissimus dorsi(1.16 sec.), right thoracloumbar fascia(1.16 sec.), left pectoralis major(1.25 sec.), on at a time during baseball hitting motion. PMT of upper body muscles were related to the shifting and rotating of body segment and this action can be considered the coordinated muscle activities of upper body

    Cytomegalovirus colitis in immunocompetent patients

    Get PDF

    COMPARISON OF PROPRIOCEPTION PERCEPTION TEST BETWEEN GOLFER AND NON-GOLFER USING TILTING PLATFORM

    Get PDF
    The purpose of this study was to test proprioception perception and compare between collegiate golfers and non-golfers using tilting platform. Sixteen male and fourteen female golfers and fifteen male and thirteen non-golfers were participated. All participants were performed perception test on the tilting platform. Frequency analysis and independent t-test were performed using SPSS 24.0. Alpha set at .05. Most participants were perceived from 1° to 2° of slopes and perceived left-right (target direction) slope than forward-backward slope. Repeated practice such as walking on the uneven ground or standing on sloped ground might help to improve proprioception perception. Further research using a tilting platform will be to develop the training program

    Elevation of serum lactate dehydrogenase in patients with pectus excavatum

    Get PDF
    INTRODUCTION: Pectus excavatum is the most common congenital chest wall deformity and the depression of the anterior chest wall, which compresses the internal organs. The aim of the present study is to investigate the effects of pectus excavatum on blood laboratory findings. MATERIAL AND METHODS: From March 2011 to December 2011, 71 patients with pectus excavatum who visited Seoul Saint Mary Hospital for Nuss procedure were reviewed and analyzed. The blood samples were routinely taken at the day before surgery and pectus bar removal was usually performed in 2 to 3 years after Nuss procedure. To investigate the effects on blood laboratory findings, preoperative routine blood laboratory data and postoperative changes of abnormal laboratory data were analyzed. RESULTS: Only lactate dehydrogenase (LDH), one of 26 separate routine laboratory tests, was abnormal and significantly elevated than normal value (age <10, p = 0.008; age ≥10, p < 0.001). However, there was no significant correlation between LDH levels and severities of pectus excavatum. The symmetric subgroup had significantly higher LDH level than the asymmetric subgroup (p <0.001) and there was a significant decrease of LDH level after correction of deformity (p = 0.017). CONCLUSION: In conclusion, only LDH, one of the routine laboratory tests, was significantly elevated than normal value, which was thought to be caused by etiologies of pectus excavatum and the compression of the internal organs. Further studies on LDH including isoenzyme studies in patients with pectus excavatum will be needed, and these studies will provide a deeper and wider comprehension of pectus excavatum

    Functionality-Driven Musculature Retargeting

    Full text link
    We present a novel retargeting algorithm that transfers the musculature of a reference anatomical model to new bodies with different sizes, body proportions, muscle capability, and joint range of motion while preserving the functionality of the original musculature as closely as possible. The geometric configuration and physiological parameters of musculotendon units are estimated and optimized to adapt to new bodies. The range of motion around joints is estimated from a motion capture dataset and edited further for individual models. The retargeted model is simulation-ready, so we can physically simulate muscle-actuated motor skills with the model. Our system is capable of generating a wide variety of anatomical bodies that can be simulated to walk, run, jump and dance while maintaining balance under gravity. We will also demonstrate the construction of individualized musculoskeletal models from bi-planar X-ray images and medical examinations.Comment: 15 pages, 20 figure
    corecore